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Abstract. In the hard core limit, interacting vortices in planar type II superconductors can be modeled
as non-interacting one dimensional fermions propagating in imaginary time. We use this analogy to derive
analytical expressions for the probability density and imaginary current of vortex lines interacting with
an isolated bent line defect and to understand the pinning properties of such systems. When there is an
abrupt change of the direction of the pinning defect, we find a sinusoidal modulation of the vortex density
in directions both parallel and perpendicular to the defect.

PACS. 74.25.Qt Vortex lattices, flux pinning, flux creep – 72.15.Rn Localization effects (Anderson or
weak localization)

1 Introduction

The statistical physics of flux lines in high Tc supercon-
ductors has attracted considerable experimental and the-
oretical attention. Controlling the pinning properties of
the magnetic vortices that penetrate the superconduct-
ing material above a critical external field Hc1 can be the
key in achieving dissipationless electrical current flow [1].
The interplay between point and correlated disorder, ther-
mal fluctuations and vortex-vortex repulsion controls the
flux line configurations and leads to a variety of different
phases [2–4].

Recent advances in manufacturing of high quality thin
superconducting slabs and films, and experimental tech-
niques for probing such systems, has made possible to
observe mesoscopic vortex dynamics and image individ-
ual vortices confined to two dimensions [5,6]. The tra-
jectories of vortices in these 2-d systems can be mapped
to the world lines of 1-d bosons and in that sense pla-
nar superconductors can be an interesting laboratory for
Luttinger liquid physics. These 1+1 dimensional systems
have been extensively studied in the presence of correlated
and point disorder [7–10], or an isolated straight columnar
pin [11–13].

The continuum elastic energy for the coarse-grained
displacement field u(x, τ) for such a system of vortex lines
in the presence of a straight columnar pin at x = 0 and a
transverse magnetic field H⊥ is

F =
∫

dxdτ
[
c44
2

(∂τu)2 +
c11
2

(∂xu)2 − n0φ0H⊥
4π

(∂τu)
]

− εdn0

∫
dτ cos[2πn0u(0, τ)]

(1)
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where c11 and c44 are the compressional and tilt moduli,
n0 is the average vortex density which depends linearly on
the external magnetic field, φ0 is the quantum flux and εd
is the pinning strength.

A Luttinger liquid parameter g

g =
πTn2

0√
c11c44

(2)

can be defined from this long distance free energy. The
long distance probability density derived from (1) exhibits
Friedel-like oscillations, modulated by an exponential:

〈n(x)〉 − n0 ∼ cos(2πn0x)
|x|α exp(−|x|/ξ). (3)

The exponent α assumes different values for values of g
above and below unity: α = 2g−1 for g < 1 and α = g for
g > 1. Here, ξ is a coherence length inversely proportional
to the transverse magnetic field, ξ ∼ H⊥ or equivalently
the relative tilt between the columnar pin and the direc-
tion H of the in-plane magnetic field of the slab.

When the vortex array is dilute enough, or in the pres-
ence of a short range hard core repulsive interaction, the
physics maps onto the free fermion problem. For a dis-
cussion in the context of commensurate-incommensurate
transitions in adsorbed monolayers, see references [14–17].
In that case the compressional and tilt moduli are inde-
pendent of the interaction potential details and assume
values such that g = 1. The probability density distribu-
tion can be easily evaluated in this regime by use of the left
and right eigenstates of the single particle non-Hermitian
Hamiltonian

H(τ) = −T
2

2γ
∂2

∂x2
− h(τ) T

∂

∂x
− Vo δ(x). (4)
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where we have set kB = 1, T is the temperature and
γ is proportional to the line tension of the vortices. The
simplest situation arises when the relative tilt between the
defect and H remains constant. This condition applies
to the straight defect case, i.e. a simple columnar pin,
in which case h(τ) ∝ H⊥ is independent of τ . However,
nanolithographic techniques could allow for the controlled
fabrication of meandering linear defects, which motivates
us to study the effect of a sudden change of direction or
an abrupt termination of a defect trajectory within the
sample. Because the one-dimensional Luttinger liquid is
a critical system (with g-dependent exponents), there can
be a striking response to such perturbations.

The case of a single flux line interacting with a me-
andering linear defect has been studied in reference [18].
In this paper, we study the more experimentally relevant
case of many flux lines interacting with a single kinked
or terminating defect, confined to a thin superconducting
slab. In Section 2 we derive an analytic expression for the
probability density distribution and imaginary current of
flux lines in the presence of a bent pinning defect. These
analytic expressions are used in Section 3 to understand
how the bent line defect perturbs the (1+1)-dimensional
vortex configurations. In Section 4, we discuss potential
experiments and defect lines that terminate.

2 Probability distribution of fluctuating
vortex filaments

In a spirit similar to reference [18], where the interac-
tion of a single flux line with a meandering linear de-
fect with trajectory xo(τ) was discussed, in this section
we derive an expression for the probability density of an
array of flux lines interacting with an attractive delta
function potential whose direction changes suddenly along
the superconducting slab. To allow for a simple analyti-
cal treatment, we consider only piece-wise constant defect
trajectories, and focus in particular on a defect consisting
of two straight segments joined at an angle. Unlike the
single vortex system, in the many flux line case there is
no critical tilt that defines the critical point of a delocal-
ization transition. The large number of extended states
that are occupied even in the ground state in the many
particle system wash out the delocalization transition of
the single bound state.

The short range attractive interaction between a vor-
tex at position xi and the pinning potential is approx-
imated by V [xi(τ) − xo(τ)] = −V0δ[xi − x0(τ)], where
x0(τ) is the pinning defect trajectory. The vortex-vortex
interaction is assumed to be U [xi − xj ] = U0δ(xi − xj),
with U0 → ∞. Upon assuming N flux lines of length
2Lτ confined to a length Lx with periodic boundary con-
ditions at 0 and Lx (see Fig. 1), we denote the posi-
tions of the vortices in the initial time-like slice τi as
{x} = (x1, x2, . . . , xN ) and in the final slice at τf as
{x′} = (x′1, x

′
2, . . . , x

′
N ). The (classical) partition function

Fig. 1. Vortices confined to a planar superconductor. A linear
defect (depicted with a thick grey line) that changes orienta-
tion in the superconducting slab acts as a pinning potential.
The external magnetic field H is along the τ dimension, which
corresponds to H⊥ = 0.

for N flux lines then reads:

Z ≡ Z[{x′}, τf ; {x}, τi;x0(τ)]

=
∫ N∏

i=1

Dxi(τ) exp(− 1
T

∑
i

τf∫

τi

dτ
[γ
2

(
dxi(τ)
dτ

)2

+ V [xi(τ) − x0(τ)] +
∑

j

U [xi(τ) − xj(τ)]
]
)

where γ is the coarse-grained line tension. We continue to
set Boltzmann’s constant to kB ≡ 1.

The transformation xi(τ) → yi(τ) = xi(τ) − x0(τ),
i = 1, . . . , N for every vortex trajectory, enables us to
switch to a frame of reference with a straight defect
but varying externally imposed transverse magnetic field
H⊥ ∝ h(τ). We can now write the partition function of
the many particle system as:

Z = Z[{x′ − xo(τf )}, τf ; {x− x0(τi)}, τi;h(τ)] (5)

where h(τ) = dx0(τ)/dτ , and the h-dependent analogue
of equation (5) is given by equation (6)

Z=
∫ N∏

i=1

Dxi(τ) exp

⎛
⎝− 1

T

∑
i

τf∫

τi

dτ
[γ
2

(
dxi(τ)
dτ

+h(τ)
)2

+V [xi(τ)] +
∑

j

U [xi(τ) − xj(τ)]
]⎞⎠ . (6)

As discussed in Section 1, we consider the g = 1 Luttinger
liquid limit and treat the vortex filaments as hard core
bosons, or, equivalently (by means of a Wigner-Jordan
transformation) as non-interacting fermions1. However,
we believe that the results will be qualitatively correct
in cases where the average vortex separation a is large
compared to the London penetration depth λ which deter-
mines the range of the inter-vortex interaction potential

1 See reference [8], and references therein.
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U(x), where x is the vortex separation. The problem of
calculating the classical partition function (6) can be re-
formulated and recast in quantum language by mapping
the thermally fluctuating vortices onto fermions propa-
gating in imaginary time. In this mapping T → � and
γ → m [1]. The partition function then simply becomes
the propagator

Z = 〈{x′−x0(τf )}|Tτ{e−
∫ τf

τi
dτ Ĥ(τ)/T }|{x−x0(τi)}〉 (7)

where Tτ is the time ordering operator and H(τ) is the
time-dependent Hamiltonian of the many particle system
associated with equation (6) above

Ĥ(τ) = −
∫

dx

(
T 2

2γ
ψ̂L

(
d

dx

)2

ψ̂R + Th(τ)ψ̂L
d

dx
ψ̂R

)

− V0ψ̂L(0)ψ̂R(0).
(8)

This Hamiltonian is non-Hermitian, the non-Hermitian
term being generated by the galilean transformation in
imaginary time. We find it therefore advantageous to work
with a non-Hermitian set of particle field operators

ψ̂L(x) =
∑

k

φk
L(x, h)ĉk†

ψ̂R(x) =
∑

k

φk
R(x, h)ĉk. (9)

φk
L(x, h) and φk

R(x, h) are the left and right, respectively,
eigenstates of the single particle Hamiltonian (i.e. neglect-
ing interactions) for h =const. indexed by a wavevector
k [19,20]. Note that, with this definition some usual re-
lations for the particle field operators do not apply, as
ψ̂†

L 	= ψ̂R. However, anticommutation relations, such as:

{ψ̂R(x), ψ̂L(x′)} = δ(x− x′) (10)

do hold, and the vortex density is given by

n̂(x) = ψ̂L(x)ψ̂R(x). (11)

We will chose periodic boundary conditions in the x
dimension for φk

L(x, h) and φk
R(x, h), a choice which is ap-

propriate whenN is odd.2 In the absence of a pin, the den-
sity of vortices is a constant 〈n̂(x)〉 = n0 = N/Lx. When
a (possibly τ -dependent) pinning potential is present, the
probability density reads:

〈n(x)〉τ ≡ L〈Ψ(τ)|n̂(x)|Ψ(τ)〉R
L〈Ψ(τ)|Ψ(τ)〉R (12)

where |Ψ(τ)〉R is the result of the evolution operator acting
on the initial condition:

|Ψ(τ)〉R = Tτ{e−
∫ τ
−Lτ

Ĥ(τ ′)dτ ′}|Ψ i〉R, (13)
2 This choice is imposed by the antisymmetry of fermions

and can be easily understood if one considers the Slater
N-particle determinant and moves one particle by one spatial
period.

and similarly for L〈Ψ(τ)|:

L〈Ψ(τ)| = L〈Ψf |Tτ{e−
∫

Lτ
τ

Ĥ(τ ′)dτ ′}. (14)

To simplify notation we now also set T = 1. Here, |Ψ i〉R
and L〈Ψf | are non-hermitian generalizations of the usual
filled Fermi sea ground state in one dimension (see below).
As in Figure 1, Lτ is the half length of the slab in the time-
like direction.

To make the calculation of 〈n(x)〉τ analytically
tractable, we now consider the simple example of a defect
trajectory with a kink at τ = 0: h(τ) = hΘ(−τ)+h′Θ(τ),
with two slopes h and h′,

x0(τ) = hτΘ(−τ) + h′τΘ(τ). (15)

Moreover, we assume ground state boundary conditions,
namely: |Ψ i〉 = |Gh〉R and 〈Ψf | = L〈Gh′ |, where |Gh〉R
is the right N particle ground state of H(τ) for h(τ) = h

and L〈Gh′ | is the left N particle ground state of Ĥ(τ) for
h(τ) = h′. The above assumption is not unreasonable if
we take Lτ ± τ 
 1 so the system has “time” to relax to
the ground state both before and after it approaches the
kink. Here |Gh〉R is the filled Fermi sea ground state con-
structed from the eigenvalues of reference [19]. It includes
the bound state (see Ref. [19]), represented as a dot on
the Reε axis of the energy spectrum diagram in Figure 2a
and the extended state that occupy the paraboloid part
of the spectrum.

To compute the probability density distribution of the
flux lines for τ > 0, we rewrite the time evolution opera-
tor as

Tτ ′{e−
∫ τ
−Lτ

dτ ′ Ĥ(τ ′)} = e−τ Ĥ(τ ′>0)e−Lτ Ĥ(τ ′<0) (16)

and insert a complete set of (normalized) many body
eigenstates Î =

∑
Kh′

|Kh′〉R L〈Kh′ |. After some straight-

forward algebra we get:

〈n(x)〉τ =
1
R
∑
Kh′

L〈Gh′ |n̂(x)|Kh′〉RL〈Kh′ |Gh〉R

e−τ [EK(h′)−EG(h′)] (17)

where R is a normalization constant equal to

R = L〈Gh′ |Gh〉R, (18)

and the sum is over all possible N particle eigenstates of
H(τ > 0). Here EK(h′) is the energy of the many body
state |Kh′〉R, and similarly EG(h) is the energy of L〈Gh′ |.
Note that in general EK(h) has both a real and imagi-
nary part, since the Hamiltonian it corresponds to is non-
Hermitian and that although (|Kh〉R)† 	= L〈Kh|, these left
and right eigenstates have the same eigenenergy.

Since n̂(x) is a single particle operator, the matrix ele-
ment L〈Gh′ |n̂(x)|Kh′〉R is zero for excited states with two
or more particle-hole excitations. The summation is over
all Kh′ states, where

|Kh′〉R = |−kF ,−kF +
2π
Lx

, ..., kh− 2π
Lx

, kp, kh+
2π
Lx

, ..., kF 〉.
(19)
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Fig. 2. Energy spectra and momenta for many body states for
N → ∞ when h < hc = V0/T . The isolated dot on the Reε axis
represents the bound single particle state and does not appear
on the wavevector line, but can participate in a particle-hole
pair. (a) Ground state. (b) Single particle-hole excitation state.

kF is the Fermi momentum, which equals kF = π
Lx

(N −
2) � πn0 for h < hc. Although not explicitly shown in
this notation, the bound single particle eigenstate is also
included in the particle-hole excitation summation. These
states correspond to single particle-hole excitations of the
filled Fermi sea |Gh′〉R as shown in Figure 2.

Equation (17) effectively becomes a summation over
all hole momenta |kh| ≤ kF and all particle momenta
|kp| > kF .

The non-Hermitian particle field operators defined ear-
lier lead to the matrix element:

L〈Gh′ |n̂(x)|Kh′〉R ={
φp

L(x, h′)φh
R(x, h′) for Kh′ 	= Gh′∑

n φ
n
L(x, h′)φn

R(x, h′) for Kh′ = Gh′

where φp
R(x, h′), φh

L(x, h′) are the single particle wavefunc-
tions of the particle-hole pair and the n summation is over
all occupied single particle eigenstates in Gh. It is easy to
see that L〈Kh′ |Gh〉R = det(C̃), where the matrix C̃ has

elements Ci k ≡
Lx/2∫

−Lx/2

dxφL
i (x, h′)φR

k (x, h).

L〈Kh′ |Gh〉R becomes negligible for large kp momenta,
which allows us to introduce a cutoff kc at the summation
in equation (17). An example is shown in Figure 3, where
we plot the logarithm of L〈Kh′ |Gh〉R for a non-Hermitian
field that changes from h = 0.05 to h′ = 0.5 and an av-
erage vortex density n0 = 0.25. The value h = 0.05 was
chosen instead of h = 0 for the τ < 0 tilt, due to the
implicit assumptions used in the evaluation of the single

1
2

3
4 −1

0
1

−3.5

−3

−2.5

−2

−1.5

−1

kh/k
F

log
10

( |〈 K
h
|G

h
 〉|  ) 

kp/k
F

−3

−2.5

−2

−1.5

Fig. 3. Logarithm (base ten) of the absolute value of the ma-
trix element L〈Kh′ |Gh〉R where Kh′ differs from the ground
state Gh′ by a single particle-hole excitation with hole momen-
tum |kh| < kF and particle momentum |kp| > kF . L〈Kh′ |Gh〉R
is maximum for |kp| → k+

F and at kp � 3kF it has decreased
by more than 2 orders of magnitude.

particle eigenstates that appear in equation (9): to allow
for analytical results in closed form, φk

L and φk
R were de-

rived under the assumption e−Lxhγ/T  1, which for finite
systems is violated as h → 0. The small initial tilt does
not qualitatively change our observations.

Having calculated 〈n(x)〉τ , we can undo our transfor-
mation, x→ x−x0(τ) to get the actual probability density
in the original frame of reference:

〈n(x)〉τ =
1
R

∑
kF <|kp|<kc

|kh|<kF

φh
L(x−x0(τ), h′)φ

p
R(x−x0(τ), h′)

〈LKh′ |Gh〉Re−τ(εp(h′)−εh(h′)) + nh′(x− x0(τ))
(20)

εp(h′)− εh(h′) is the particle-hole energy and nh′(x) is the
vortex density 〈n(x, τ)〉 for constant h(τ) = h′.

We can easily adapt the above treatment to get the
probability density for τ < 0:

〈n(x)〉τ =
1
R

∑
kF <|kp|<kc

|kh|<kF

φp
L(x− x0(τ), h)φh

R(x− x0(τ), h)

L〈Gh′ |Kh〉Reτ(εp(h)−εh(h)) + nh(x− x0(τ)).
(21)

Another quantity which we can give us some insight
to the properties of the transition between the h and h′
sections of the tilted defect is the expectation value of the
current operator [12,19]:

Ĵ = −idH(τ)
dh

=
iT

2

∫ [
ψ̂L(

d

dx
ψ̂R) − (

d

dx
ψ̂L)ψ̂R

]
dx.

(22)
Note that although the Hamiltonian depends on h, the
current operator itself is explicitly h-independent. With
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h=0.02 → h=0.4
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Fig. 4. Density of vortices when the tilt of the linear defect
changes from h = 0.02 to h′ = 0.4. For better visualization,
the range of the n(x, τ ) values was restricted to [0.16, 0.27].
On the right: snapshots for times τ = −30, τ = 0 and τ =
48. Note the Friedel oscillations. The dashed curves represent
the exp(−|x|/ξ)/|x| envelope of equation (3). Close to τ = 0,
an asymmetry develops in the n(x, τ ) profile, and therefore
such an envelope cannot be defined. Lengths are measured in
units of [x] = T 2/(γV0) and imaginary time in units of [τ ] =
T 3/(γV 2

0 ).

our definition, Ĵ is not a current density operator, but an
integrated, position independent quantity, a measure of
the total transverse magnetization due to the tilted flux
lines.

In the absence of a pinning defect, the current 〈Ĵ〉
is zero since the flux lines are parallel to the inducing
magnetic field. When a defect is present, the flux lines
bend in the vicinity of the tilted defect, thus creating a
non-zero h-dependent current. As long as the magnetic
field remains parallel to the τ -axis, the total current 〈J〉
is independent of the system size, since vortices far from
the defect are parallel to the magnetic field and do not
contribute to the current.

3 Oscillations in the time-like dimension

In this Section we present some results obtained using the
formalism discussed in Section 2, and examine the flux
line configuration in the vicinity of the defect kink.

Figures 4 and 5 show the vortex density distribution
for a system of N = 91 vortices penetrating a planar slab
of length Lx = 360 (measured in units of T 2/γV0), and
interacting with a linear defect with tilt h = 0.02 for τ < 0
and h = 0.4 and 0.9 respectively for τ > 0.

As τ → ∞, the probability distribution is peaked on
the defect and exhibits oscillatory behavior with ampli-
tude that decays as a power law modulated by an expo-
nential, as described by equation (3) with α = 1 (“Friedel”
oscillation behavior [11,12]). For h � 0 the vortices form
a periodic array, centered on the defect. The situation
changes drastically close to the defect kink, especially for

h=0.02 → h=0.9
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Fig. 5. Above: Density of vortices when the tilt of the lin-
ear defect changes from h = 0.02 to h′ = 0.9. For better vi-
sualization, the range of the n(x, τ ) values was restricted to
[0.16, 0.27]. Below: snapshots for times τ = −30, τ = 0 and
τ = 48. The dashed curves on the top and bottom graphs
represent the exp(−|x|/ξ)/|x| envelope of equation (3). ξ is in-
versely proportional to h, so for high tilts no Friedel oscillations
can be seen. Lengths are measured in units of [x] = T 2/(γV0)
and imaginary time in units of [τ ] = T 3/(γV 2

0 ).

τ > 0. In this case there is a competition between the
externally imposed magnetic field H , which alone would
result in an array of vortices parallel to the field, and the
tilted defect. The vortex which was localized on the defect
for τ < 0 follows the defect until forced out by another
vortex, which takes its place. Since the average vortex-
vortex distance is a = 1/n0, the localized vortex stays
on the defect over a time-like distance ∆τ ∼ 1/(n0h).
The exchange of vortices that are localized on the defect
(one vortex enters while the next escapes the defect) takes
place at the neighborhood of the probability density local
minima n(x0(τt), τt). However, as τ → ∞, n(x0(τt), τt)
becomes constant so the coordinate τt of the exchange is
well defined only close to the kink. We expect that the
τ -independent probability distribution nh′(x, τ → ∞) is
approached exponentially fast. A typical vortex configu-
ration is presented in Figure 6.

The kink breaks time-translational invariance and
leads an oscillatory behavior in the current, as well as
the density, with period ∆τ ′ = 1/(n0h

′). The imaginary
component of the “current” is maximized when the vor-
tex follows the defect, and minimized at τt, the exchange
point. The oscillations in the current die out far from the
kink, as the “jumps” now occur with equal probability
at all times τ and a traffic jam profile similar to the one
described in references [11,12] is formed. As can be seen
in Figure 7, the maxima in the current coincide with the
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Fig. 6. A probable configuration of flux lines on the planar
superconductor. In this sketch, flux lines have been drawn to
roughly follow the probability density maxima. The dotted el-
lipses demonstrate the likely position on the defect for the vor-
tex exchange.
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0
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Fig. 7. Total imaginary current (see Eq. (22)) for τ > 0 tran-
sition h = 0.05 → h′ = 0.5. The dotted line is a plot of
〈n(x0(τ ))〉τ , the probability density on the defect in arbitrary
units. Inset: Imaginary current for τ < 0.

maxima of n(x0(τ), τ). An oscillatory behavior of the cur-
rent also appears for τ < 0 as shown in the inset of Fig-
ure 7, this time with period ∆τ = 1

n0h . ∆τ diverges as
h→ 0 and no oscillations in imaginary time are present.

The length of the superconducting slab necessary to
observe the phenomena discussed in this work would pri-
marily depend on the imaginary time vortex-vortex colli-
sion period ∆τ ′ � a/h′. If we take U(x) to be proportional
to the modified Bessel function of zeroth order (see for ex-
ample [21] and references therein), then for a � 3.5λ we
have U(a)/U(λ) < 0.05, so we would expect that the be-
haviour of the vortex system at that density could reason-
ably be approximated with a non-interacting model. For
λ ∼ 40 nm, then for a system of 10 vortices we would need
a superconducting wafer of width ∼1.5 µm and length
∼1.5 µm/h′, well within the experimentally accessible re-
gion.

The behaviors described before are summarized in Fig-
ure 8, where we plot the logarithm of a local amplitude
A(x, τ) of the oscillations for a system of N = 91 vortices
(again spread over a length Lx = 360), in the presence
of a defect with h = 0.05 for τ < 0 and h = 0.5 for
τ > 0. The amplitude is a coarse-grained oscillation enve-
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Fig. 8. Logarithm of the amplitude describing the oscillatory
decay of n(x, τ ) away from a bent defect for a transition h =
0.05 → h′ = 0.5, with N = 91 vortices and Lx = 360. The
length and time units are [x] = T 2/(γV0) and [τ ] = T 3/(γV 2

0 )
respectively. The frame of reference has been shifted so that
the defect (and the amplitude maximum) remains at x = 0 for
both positive and negative τ .

lope obtained by subtracting the density of a local min-
imum from the density at the previous local maximum:
A((xmin + xmax)/2, τ) = n(xmax, τ) − n(xmin, τ). For eas-
ier visualization, in this picture we have shifted the frame
of reference to one which moves with the defect, so that
the center of the defect is at x = 0. As always, the defect
changes slope at τ = 0.

The picture consists of an almost uniform in x oscil-
latory background with a maximum at τ = 0 which de-
creases exponentially fast in τ (appearing as a straight
line in a logarithmic plot) far from the kink.3 The oscilla-
tory background is solely due to the presence of the kink
in the defect trajectory. This abrupt change results in en-
hanced positional order of the vortices far from the defect.
The “tent”-like structure emerging from the background
as τ → ±∞ is due to the oscillatory behavior of the time
independent part of the density nh(x) for τ < 0 and nh′

for τ < 0. As the jump from h to h′ at τ = 0 is ap-
proached, the width of the “tent”-like structure, which is
a measure of the coherence length ξ ∼ 1/h, decreases and
the “tent” becomes narrower. Of course we should bear in
mind that the quantity A(x, τ) is not well defined close to
x = 0, where n(x, τ) changes much faster than λ ∼ Lx/N ,
the wavelength of he Friedel oscillations. With this caveat,
the oscillatory behavior at x = 0 with period ∆τ for τ < 0
and ∆τ ′ for τ > 0 can be understood as a signature of the
vortex interactions mediated by the kink in the defect.

Far from the kink, at each time slice the vortex density
distribution is symmetric about the defect position x0(τ).
Although not evident at the resolution of Figure 8, the
reflection symmetry of n(x, τ) across the defect is broken
near the kink is broken. The density of vortices is higher
on the concave side of the defect, although only by a small
amount, as seen in Figure 9. This effect was also present

3 As Lx → ∞, the oscillatory background decays slowly to
zero far from the defect.
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Fig. 9. Total number of vortices Nc =
∫ x0(τ)+Lx/2

x0(τ)
〈n(x)〉τdx

on the concave side of the defect for a transition h = 0.02 →
h′ = 0.7.

in the single vortex- meandering defect system, and dis-
appears when h′ → h [18].

The average vortex positions 〈x〉i (corresponding to
the local maxima of the vortex density) far from the de-
fect kink follow the well known Friedel oscillation pat-
tern [11,12], forming a periodic array with lattice spacing
1/n0. The phase of the oscillations far from the defect, de-
pends on the tilt h and the strength of the attractive po-
tential. However, as the defect kink is approached the sim-
ple periodic pattern in the vortex positions breaks down,
and a phase shift is introduced. To explore how the defect
kink affects 〈x〉i in Figure 10a we plot the local maxima
(average position of each flux line) of the probability dis-
tribution at imaginary time τ = 0 (squares) and at τ = 60
(diamonds). Each column corresponds to a different value
of h′. In all cases, h = 0.02. The blue cross corresponds
to the position of the defect at τ = 0 and the red cross at
τ = 60.

At each column, the data points between two crosses
correspond to the vortices whose trajectories crossed the
defect between τ = 0 and τ = 60. By simple inspection
it can be determined that there is a minimal change in
the average vortex position between τ = 0 and τ = 60 for
vortices that did not cross the defect. However, vortices
that cross the defect get trapped and move with it for some
time until forced out by the next vortex that impinges
upon the defect.

A more detailed description is given by Figure 10b,
where we plot the shift in average position of the vortices
〈x〉i versus vortex number i for different tilts. We arbi-
trarily labeled the vortex at distance 〈x〉 � 50 as vortex
1. A positive ∆〈x〉i corresponds to a vortex position shift-
ing to the right at τ = 60 with respect to its original
position at τ = 0. For all tilts h′, the vortex which is im-
mediately to the left of the defect is shifted to the left. As
discussed previously, vortices enter, become trapped and
then exit the defect at periodic intervals. For certain tilts
h′, the imaginary time slice τ = 60 happens to be when a
vortex enters the defect, by abruptly turning to the left.
This is the origin of the maxima that can be observed on
Figure 10b.

Ignoring those τ dependent features, all displacements
∆〈x〉i of the vortices that cross the defect collapse on
the same value, a trapping displacement ltr approximately
equal to ltr � 0.38a, where a is the mean vortex spacing.
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Fig. 10. (a) Average position flux lines at τ = 0 (squares) and
at τ = 60 (diamonds). Each column corresponds to a different
value of h′. In all cases, h = 0.02. The blue cross corresponds
to the position of the defect at τ = 0 and the red cross at
τ = 60. (b) Shift in average position of the vortices 〈x〉i versus
vortex number i. The vortices that cross the defect exhibit an
approximately constant shift in position, independent of h′.

The trapping displacement does not depend on the tilt h′,
as similarly defined quantities for single vortex systems,
i.e. the trapping length in [19] and the vortex shift m(h)
in [18], do. This contradicts the intuitive expectation, de-
rived from the single pinned flux lines that ltr should de-
crease as h′ increases.

4 Potential experiments and defect lines
that terminate

The above results and discussion about the probability
density are applicable only far from the edges of the
slab, a region difficult to probe experimentally. The use of
ground state initial and final boundary conditions to de-
rive the probability density in the core of the slab requires
that the coordinate τ of interest be far from the bound-
aries. The experimentally relevant boundary condition (fi-
nal or initial state) is an extension of the single particle
boundary conditions

∫
dx〈x| for many particles, namely

〈Ψf | =
∫

dx1

∫ x1 dx2 . . .
∫ xN−1 dxN 〈x1, x2, . . . , xN | (and
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similarly for the initial state). If we examine the proba-
bility density distribution at the upper boundary (which
describes the exit positions of the vortices ), we can assume
ground state boundary conditions at the other bound-
ary provided Lτ 
 1. The energy spectrum of the single
particle states has an imaginary component. Due to this
component, irrespective of the exact form of the exiting
boundary conditions, we expect to observe oscillatory be-
havior with respect to the distance between the kink and
the exit surface Lf . The probability density at the upper
boundary reads:

〈n(x)〉Lf
=

∑
Kh′ 〈Ψf |n̂(x)|Kh′〉e−∆E(Kh′ )Lf 〈Kh′ |Gh〉∑

Kh′ 〈Ψf |Kh′〉e−∆E(Kh′ )Lf 〈Kh′ |Gh〉
(23)

where ∆E(Kh′) = E(Kh′)−E(Gh′). If, however, Lf 
 1,
then we can approximate the sum in the denominator of
equation (23) by the term Kh′ = Gh′ and find for the
density of exit points:

〈n(x)〉Lf
� nΨf (x) +

1
〈Ψf |Gh′〉〈Gh′ |Gh〉∑

Kh′ �=Gh′

(〈Ψf |n̂(x)|Kh′〉 − nΨf (x)〈Ψf |Kh′〉)

e−∆E(Kh′ )Lf 〈Kh′ |Gh〉.
(24)

Here, nΨf (x) is the probability density distribution at the
boundary for Lf → ∞:

nΨf (x) ≡ 〈Ψf |n̂(x)|Gh′ 〉
〈Ψf |Gh′〉 . (25)

For sufficiently large Lf , the sum in the second term of
equation (24) is dominated by the lowest energy eigen-
states Kh′ . These are the single particle excitations with
energy ReE(Kh′) � N/L2

x and momentum ∆p � 2kF

(the equality holds for Lx → ∞). Note that e−∆E Lf /T �
e−i2hkF Lf � e−i2πn0hLf . Thus, if we keep ∆x = x−x0(τ),
the distance from the defect, constant we expect to ob-
serve a periodic modulation in the τ direction of the vortex
probability distribution. This periodicity should manifest
itself in magnetic force microscope (MFM) experiments
as it traverses the slab [22,23], since the force necessary
to pull the vortex from its exit position would depend
on the length Lf of the tilted segment of the defect. For
example many linear defects with varying tilted segment
length can be etched on the same superconducting slab, as
in Figure 11. If the defects are sufficiently far apart so that
we can assume that each vortex interacts with only one
defect, then we expect n(x, τ) of the single defect system
to approximate well the density at the neighborhood of
each defect. With the proper choice of the tilted segments
of the linear defects imprinted on the slab, one should be
able to observe a sin(2πn0hLf ) dependence of the prob-
ability density at a fixed distance from each defect end
point.

An interesting question that can be explored through
a similar approach is the case of a defect terminating while

Fig. 11. Sketch of possible experimental setup for the kinked
defect system. The defects are represented with dark gray lines.
The MFM tip probes the neighborhood of the defect exit po-
sition.
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Fig. 12. Density of vortices with a terminating linear defect
with tilt h =0.02. The defect terminates at τ = 0. On the
right: snapshots for times τ =0, τ =2 and τ =6. The slight
asymmetry of the density profile near τ = 0 is due to the
nonzero tilt h of the defect, and disappears for h → 0. The
density distribution delocalises exponentially fast after τ = 0.
Lengths are measured in units of [x] = T 2/(γV0) and imaginary
time in units of [τ ] = T 3/(γV 2

0 ).

still inside the slab. In this case the localised bound state
that existed for h smaller than hc, the critical tilt for the
delocalised transition disappears for τ > 0 and the spec-
trum consists only of extended states. The localised vortex
starts diffusing as it approaches the defect end and spatial
phase information is quickly lost (Fig. 12). The “locking”
of phase in the time-like dimension that was observed for
kinked defects and the oscillations in τ of the vortex den-
sity that this resulted to are not present in the case of the
terminating defect. This can be seen in Figure 13, where
the defect is at tilt h = 0.7 with respect to the externally
imposed field. Vortices still enter and exit the defect form-
ing the traffic jam discussed in references [11] and [12],
but the exit position of the last trapped vortex can vary so
oscillations of the vortex density in the time like dimension
are not observed.
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Appendix A: Derivation of the non-Hermitian
Hamiltonian

The mapping of the classical flux line system to imaginary
bosons (or fermions) is explained in many publications, see
for example references [19,18]. However for completeness,
we briefly review it here. The partition function for one
flux line interacting with a meandering defect is:

Z[xf , τf ;xi, τi;h(τ)] =
∫ x(τf )=xf

x(τi)=xi

Dx(τ)e−E[x(τ)]/T (26)

where

E[x(τ)] =

τf∫

τi

dτ

[
γ

2

(
dx(τ)
dτ

)2

− Vo δ(x− x0(τ))

]
. (27)

xi and xf are the positions of the vortex at τi and τf
respectively. A change of variables y(τ) = x(τ) − x0(τ)
will transform equation (26) to a functional integral over
the variable y(τ) with energy:

E[y(τ)] =

τf∫

τi

dτ

[
γ

2

(
dy(τ)
dτ

+ h(τ)
)2

− Vo δ(y)

]
(28)

where h(τ) = dx0(τ)/dτ .
The partition function obeys the equation:

− ∂

∂τ
Z[y, τ ; yi, τi;h(τ)] =

(− T 2

2γ
∂2

∂y2
− h(τ)T

∂

∂y

− V0δ(y)
)Z[y, τ ; yi, τi;h(τ)].

(29)

Thus, Z[x, τ ; yi, τi;h(τ)] can be thought of as the quan-
tum mechanical propagator of a particle propagating in
imaginary time, with non-Hermitian Hamiltonian:

H(τ) =
1
2γ
p̂2 − ih(τ)p̂− V0δ(x) (30)

where p̂ ≡ T
i

∂
∂x . The generalization to many lines is

straightforward.
The non-Hermitian single particle eigenstates φk

R(x, h)
used throughout this work are derived from solving equa-
tion (30) for h(τ) = cons[19]. When h < hc = V0/T , for a

system of length Lx, with x ∈ [0, Lx] and periodic bound-
ary conditions, the (unnormalized) extended states read:

φk
R(x, h) =

e−ikx+δκx

e−ikLx+δκLx − 1
− eikx−2γhx/T−δκx

eikLx−2γhLx/T−δκLx − 1
(31)

where

δκ =
1
Lx

ln

[
− k + iγh

T

k + i γ
T (h− V0

T )

]
(32)

provided that e−2Lxγh/T  1. The bound state similalry
reads

φ0
R(x, h) =

e
γ
T (

V0
T −h)x

e
γ
T (

V0
T −h)Lx − 1

− e−
γ
T (

V0
T +h)x

e−
γ
T (

V0
T +h)Lx − 1

. (33)
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